作者单位
摘要
中国激光
2024, 51(7): 0700101
Author Affiliations
Abstract
1 Zhangjiang Laboratory, Shanghai, China
2 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Ultra-intense Laser Science and Technology, Shanghai, China
3 Shenzhen Technology University, College of Engineering Physics, Shenzhen, China
4 ShanghaiTech University, Shanghai, China
Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser, which is called the λ3 regime or the λ3 laser. Herein, we introduced a rotational hyperbolic mirror—an important rotational conic section mirror with two foci—that is used as a secondary focusing mirror after a rotational parabolic mirror to reduce the focal spot size from several wavelengths to a single wavelength by significantly increasing the focusing angular aperture. Compared with the rotational ellipsoidal mirror, the first focal spot with a high intensity, as well as some unwanted strong-field effects, is avoided. The optimal focusing condition of this method is presented and the enhanced tight focusing for a femtosecond petawatt laser and the λ3 laser is numerically simulated, which can enhance the focused intensities of ultra-intense ultrashort lasers for laser physics.
ultra-intense ultrashort lasers beam focusing focused intensity hyperbolic mirrors 
Advanced Photonics Nexus
2024, 3(3): 036002
李朝阳 1,2,*冷雨欣 2李儒新 1,2,3
作者单位
摘要
1 张江实验室,上海 201210
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
3 上海科技大学,上海 201210
超强超短激光在空间上具有大口径、在时间上具有短脉冲,因此极易产生时空耦合效应,例如脉冲前沿畸变,使得脉冲前沿和相位前沿发生时空分离,通常表现为脉冲前沿倾斜或弯曲,不利于获得预期的高聚焦光强。但当这种脉冲前沿畸变(控制)用于产生X形光波包时,却增加了一维全新的自由度,实现了光波包群速度和群加速度的自由控制,可获得超光速、亚光速、加速、减速,甚至动态可控的群速度。通过综述脉冲前沿畸变(控制)在超强超短激光中的不良影响和在X形光波包中的特殊效果,旨在为同一光学现象在不同研究方向间的交叉应用提供些许思考。
时空耦合 脉冲前沿 相位前沿 X形光波包 群速度 群加速度 
激光与光电子学进展
2024, 61(5): 0500001
魏见萌 1,2夏长权 3,*冯珂 2张虹 2[ ... ]李儒新 2,4
作者单位
摘要
1 中国科学技术大学物理学院,安徽 合肥 230026
2 中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,中国科学院超强激光科学卓越中心,上海 201800
3 扬州大学物理科学与技术学院,江苏 扬州 225009
4 上海科技大学物质科学与技术学院,上海 200031
逆康普顿散射源是利用高能电子束和强激光对撞产生高能辐射的光源。传统电子加速器作为电子源的逆康普顿散射源体积庞大,难以推广。而新型的激光等离子体电子加速器具有更高的加速梯度,具备小型化的发展潜力。全光逆康普顿散射源就是一种基于激光等离子体电子加速器实现的小型化高能辐射源,具有更短脉宽、更高亮度的辐射输出,应用前景十分广阔。首先,总结了全光逆康普顿散射源在提高亮度、能量和单能性等方面的优化研究进展,并分析了设计重点;最后,介绍了全光逆康普顿散射源在基础科学研究、工业和生物医学领域的典型应用。
超快激光 激光等离子体电子加速 全光逆康普顿散射源 新型辐射源 
光学学报
2024, 44(4): 0400004
作者单位
摘要
中国激光
2024, 51(1): 0100001
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
2 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
A supercontinuum white laser with ultrabroad bandwidth, intense pulse energy, and high spectral flatness can be accomplished via synergic action of third-order nonlinearity (3rd-NL) and second-order nonlinearity. In this work, we employ an intense Ti:sapphire femtosecond laser with a pulse duration of 50 fs and pulse energy up to 4 mJ to ignite the supercontinuum white laser. Remarkably, we use water instead of the usual solid materials as the 3rd-NL medium exhibiting both strong self-phase modulation and stimulated Raman scattering effect to create a supercontinuum laser with significantly broadened bandwidth and avoid laser damage and destruction. Then the supercontinuum laser is injected into a water-embedded chirped periodically poled lithium niobate crystal that enables broadband and high-efficiency second-harmonic generation. The output white laser has a 10 dB bandwidth encompassing 413 to 907 nm, more than one octave, and a pulse energy of 0.6 mJ. This methodology would open up an efficient route to creating a long-lived, high-stability, and inexpensive white laser with intense pulse energy, high spectral flatness, and ultrabroad bandwidth for application to various areas of basic science and high technology.
intense white laser optical-damage-free water third-order nonlinearity second-order nonlinearity 
Advanced Photonics Nexus
2024, 3(1): 016008
高记星 1,2娄智远 1,2杨帆 1,2杨晓骏 1[ ... ]李儒新 1,2,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
2 中国科学院大学材料科学与光电工程中心,北京 100049
3 张江实验室,上海 201210
利用百太瓦级激光系统在氖气(Ne)中得到基于高次谐波产生的极紫外脉冲。通过松聚焦结构在13 nm波段产生单级次单脉冲能量为13.5 nJ(13.1 nm波长)和11.1 nJ(13.5 nm波长)的高次谐波辐射,转换效率为3.6×10-73.0×10-7,谐波发散角的半高全宽为0.32 mrad和0.33 mrad。对含时薛定谔方程进行数值求解,得到单原子偶极发射谱,结合麦克斯韦方程组模拟传播效应,同时考虑气体对谐波的吸收效应,理论模拟得到的信号强度随气压和光强的变化趋势与实验结果基本符合。实现相位匹配的谐波光束质量很好,纵向空间分布为高斯型。结合相位匹配条件和空间分布的分析得到了目前激光参数下的最优相位匹配条件。这种基于高次谐波机制的高能量相干极紫外光源在作为自由电子激光的种子光源以及超快非线性实验和半导体工业检测等方面具有广阔的应用前景。
极紫外 高次谐波 相位匹配 空间分布 
光学学报
2024, 44(2): 0214001
Author Affiliations
Abstract
1 College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
2 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, People’s Republic of China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, People’s Republic of China
We propose a novel approach for generating a high-density, spatially periodic narrow electron beam comb (EBC) from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma. We employ particle-in-cell (PIC) simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma. This overlap results in the formation of a transverse standing wave, leading to a spatially periodic high-density modulation known as a plasma grating. The electron density peak within the grating can reach several times the background plasma density. The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons, resulting in Coulomb expansion and acceleration of the electrons. As a result, some electrons expand into vacuum, forming a periodic narrow EBC with an individual beam width in the nanoscale range. To further explore the formation of the nanoscale EBC, we conduct additional PIC simulations to study the dependence on various laser parameters. Overall, our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.
Matter and Radiation at Extremes
2023, 8(6): 064001
Yanqi Liu 1,2†Keyang Liu 1,3Zhaoyang Li 1,2,*Yuxin Leng 1,*Ruxin Li 1,2,4,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
2 Zhangjiang Laboratory, Shanghai, China
3 Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, Center for Attosecond Science and Technology, Xi’an, China
4 ShanghaiTech University, Shanghai, China
After reaching a world record of 10 PW, the peak power development of the titanium-sapphire (Ti:sapphire) PW ultraintense lasers has hit a bottleneck, and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy. Unlike coherent beam combining, coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes, truncating transverse amplified spontaneous emission, suppressing parasitic lasing, and, importantly, not requiring complex space-time tiling control. A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported. The results show that the addition of a 2 × 2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4, further approaching the exawatt class.
petawatt exawatt titanium-sapphire laser transverse amplified spontaneous emission parasitic lasing coherent crystal tiling 
Advanced Photonics Nexus
2023, 2(6): 066009
Mingze Sun 1,2†Zixiang Jiang 1,2†Yong Fu 3†Yanrong Jiang 1,2[ ... ]Peng Peng 1,2,*
Author Affiliations
Abstract
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, Shanghai, China.
2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, Shanghai, China.
3 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
4 Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria.
5 School of Science, East China University of Technology, Nanchang, Jiangxi, China.
6 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, Shanghai, China.
7 Joint Attosecond Science Laboratory, National Research Council and University of Ottawa, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
8 Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5, Canada.
Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequency-dependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light field is usually determined by the complex refractive index n˜. The absorption signal is directly related to the imaginary part of n˜, namely, the absorption index. The real part of n˜ refers to the real refractive index, which describes the chromatic dispersion of an optical material. However, the real refractive index information is usually not available in conventional absorption experiments. Here, we investigate the refractive index line shape in ultrafast XUV transient absorption spectroscopy by using a scheme that the XUV pulse traverses the target gas jet off-center. The jet has a density gradient in the direction perpendicular to the gas injection direction, which induces deflection on the XUV radiation. Our experimental and theoretical results show that the shape of the frequency-dependent XUV deflection spectra reproduces the refractive index line profile. A typical dispersive refractive index line shape is measured for a single-peak absorption; an additional shoulder structure appears for a doublet absorption. Moreover, the refractive index line shape is controlled by introducing a later-arrived near-infrared pulse to modify the phase of the XUV free induction decay, resulting in different XUV deflection spectra. The results promote our understanding of matter-induced absorption and deflection in ultrafast XUV spectroscopy.
Ultrafast Science
2023, 3(1): 0029

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!